A short proof of a generating function for Jacobi polynomials
نویسندگان
چکیده
منابع مشابه
Generating Functions of Jacobi Polynomials
Multiplicative renormalization method (MRM) for deriving generating functions of orthogonal polynomials is introduced by Asai–Kubo– Kuo. They and Namli gave complete lists of MRM-applicable measures for MRM-factors h(x) = ex and (1 − x)−κ. In this paper, MRM-factors h(x) for which the beta distribution B(p, q) over [0, 1] is MRM-applicable are determined. In other words, all generating function...
متن کاملA short proof of generalized Jacobi-Trudi expansions for Macdonald polynomials
We give an elementary proof of the development of Macdonald polynomials in terms of “modified complete” and elementary symmetric functions.
متن کاملA SHORT PROOF OF A RESULT OF NAGEL
Let $(R,fm)$ be a Gorenstein local ring and$M,N$ be two finitely generated modules over $R$. Nagel proved that if $M$ and $N$ are inthe same even liaison class, thenone has $H^i_{fm}(M)cong H^i_{fm}(N)$ for all $iIn this paper, we provide a short proof to this result.
متن کاملA Mthod for Generating the Turbulent Intermittency Function
A detection method based on sensitization of a squared double differentiated signal is developed which discriminates the turbulent zones from laminar zones quite accurately. The procedure adopts a variable threshold and a variable hold time of the order of the Kolmogorov time scale. The output file so generated, includes all the information for further analysis of the turbulent signal.
متن کاملA SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS
In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1980
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1980-0580992-8